Graph Kernels for Molecular Structure−Activity Relationship Analysis with Support Vector Machines

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Kernels for Molecular Structure-Activity Relationship Analysis with Support Vector Machines

The support vector machine algorithm together with graph kernel functions has recently been introduced to model structure-activity relationships (SAR) of molecules from their 2D structure, without the need for explicit molecular descriptor computation. We propose two extensions to this approach with the double goal to reduce the computational burden associated with the model and to enhance its ...

متن کامل

QSAR Analysis with Support Vector Machines and Graph Kernels

Kernel methods, such as support vector machines, have been applied to solving various problems in bioinformatics. Recently, marginalized kernels between labeled graphs have been proposed [2, 3], which enable the application of kernel methods to the analysis and classification of chemical compounds such as QSAR (quantitative structure-activity relationship). These graph kernels are based on the ...

متن کامل

Support vector machines with indefinite kernels

Training support vector machines (SVM) with indefinite kernels has recently attracted attention in the machine learning community. This is partly due to the fact that many similarity functions that arise in practice are not symmetric positive semidefinite, i.e. the Mercer condition is not satisfied, or the Mercer condition is difficult to verify. Previous work on training SVM with indefinite ke...

متن کامل

Data-driven Kernels for Support Vector Machines

Kernel functions can map data points to a non-linear feature space implicitly, and thus significantly enhance the effectiveness of some linear models like SVMs. However, in current literature, there is a lack of a proper kernel that can deal with categorical features naturally. In this paper, we present a novel kernel for SVM classification based on data-driven similarity measures to compute th...

متن کامل

Fast Support Vector Machines for Structural Kernels

In this paper, we propose three important enhancements of the approximate cutting plane algorithm (CPA) to train Support Vector Machines with structural kernels: (i) we exploit a compact yet exact representation of cutting plane models using directed acyclic graphs to speed up both training and classification, (ii) we provide a parallel implementation, which makes the training scale almost line...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Chemical Information and Modeling

سال: 2005

ISSN: 1549-9596,1549-960X

DOI: 10.1021/ci050039t